
GPU programming:
CUDA basics

Sylvain Collange
Inria Rennes – Bretagne Atlantique

sylvain.collange@inria.fr

2

This lecture: CUDA programming

We have seen some GPU architecture

Now how to program it ?

3

Outline

GPU programming environments

CUDA basics

Host side

Device side: threads, blocks, grids

Expressing parallelism

Vector add example

Managing communications

Parallel reduction example

4

GPU development environments

For general-purpose programming (not graphics)

Multiple toolkits

NVIDIA CUDA

Khronos OpenCL

Microsoft DirectCompute

Google RenderScript

Mostly syntactical variations

Underlying principles are the same

In this course, focus on NVIDIA CUDA

5

Higher-level programming

Directive-based

OpenACC

OpenMP 4.0

Language extensions / libraries

Microsoft C++ AMP

Intel Cilk+

NVIDIA Thrust, CUB

Languages

Intel ISPC

...

Most corporations agree we need common standards...

But only if their own product becomes the standard!

6

Outline

GPU programming environments

CUDA basics

Host side

Device side: threads, blocks, grids

Expressing parallelism

Vector add example

Managing communications

Parallel reduction example

Re-using data

Matrix multiplication example

7

Hello World in CUDA

CPU “host” code + GPU “device” code

__global__ void hello() {
}

int main() {
hello<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

Device code

Host code

8

Compiling a CUDA program

Executable contains both host
and device code

Device code in PTX
and/or native

PTX can be recompiled
on the fly
(e.g. old program on new GPU)

NVIDIA's compiler driver takes
care of the process:

Host code Device code

nvcc -o hello hello.cu

gcc/MSVC cudafe

Source
files
.cu

Intermediate
language

PTX

ptxas

fatbin

GPU native
binary

Binary for
other GPU

Fat
binary

nvcc

9

Control flow

Program running on CPUs

Submit work to the GPU through the GPU driver

Commands execute asynchronously

Application:
Fat binary

CUDA Runtime

GPU Driver

CUDA Runtime API
cudaXxx functions

CUDA Driver API
cuYyy functions

GPU
code

Command
queue

CPU GPU

User mode

Kernel mode

push pop

10

External memory: discrete GPU

Classical CPU-GPU model

Split memory spaces

Highest bandwidth from
GPU memory

Transfers to main
memory are slower

CPU GPU

Main memory Graphics memory

PCI
Express

16GB/s

26GB/s 290GB/s

Ex: Intel Core i7 4770, Nvidia GeForce GTX 780

8 GB 3 GB

11

External memory: embedded GPU

Most GPUs today

Same memory

May support coherent memory

GPU can read directly from CPU
caches

More contention on external
memory

CPU GPU

Main memory

26GB/s

8 GB

Cache

12

Data flow

Main program runs on the host

Manages memory transfers

Initiate work on GPU

Typical flow
CPU GPU

CPU memory GPU memory

13

Data flow

Main program runs on the host

Manages memory transfers

Initiate work on GPU

Typical flow

1. Allocate GPU memory
CPU GPU

CPU memory GPU memory

1

14

Data flow

Main program runs on the host

Manages memory transfers

Initiate work on GPU

Typical flow

1. Allocate GPU memory

2. Copy inputs from CPU mem
to GPU memory

CPU GPU

CPU memory GPU memory

2

1

15

Data flow

Main program runs on the host

Manages memory transfers

Initiate work on GPU

Typical flow

1. Allocate GPU memory

2. Copy inputs from CPU mem
to GPU memory

3. Run computation on GPU

CPU GPU

CPU memory GPU memory

2

3

1

16

Data flow

Main program runs on the host

Manages memory transfers

Initiate work on GPU

Typical flow

1. Allocate GPU memory

2. Copy inputs from CPU mem
to GPU memory

3. Run computation on GPU

4. Copy back results
to CPU memory

CPU GPU

CPU memory GPU memory

2

3

4 1

17

Example: a + b

Our Hello World example did not involve the GPU

Let's add up 2 numbers on the GPU

Start from host code

vectorAdd example: cuda/samples/0_Simple/vectorAdd

int main()
{
 float ab[] = {1515, 159}; // Inputs, in host mem

 float c;
 // c = ab[0] + ab[1];
 printf("c = %f\n", c);
}

18

Step 1: allocate GPU memory

Allocate space
for a, b and c
in GPU memory

At the end,
free memory

int main()
{
 float ab[] = {1515, 159}; // Inputs, in host mem

 // Allocate GPU memory
 float *d_AB, *d_C;
 cudaMalloc((void **)&d_AB, 2*sizeof(float));
 cudaMalloc((void **)&d_C, sizeof(float));

 // Free GPU memory
 cudaFree(d_AB);
 cudaFree(d_C);
}

Passing a pointer to the
pointer to be overwritten

19

Step 2, 4: copy data to/from GPU memory

 // Copy from CPU mem to GPU mem
 cudaMemcpy(d_AB, &ab, 2*sizeof(float), cudaMemcpyHostToDevice);

 // Copy results back to CPU mem
 cudaMemcpy(&c, d_C, sizeof(float), cudaMemcpyDeviceToHost);
 printf("c = %f\n", c);

int main()
{
 float ab[] = {1515, 159}; // Inputs, CPU mem

 // Allocate GPU memory
 float *d_AB, *d_C;
 cudaMalloc((void **)&d_AB, 2*sizeof(float));
 cudaMalloc((void **)&d_C, sizeof(float));

 // Free GPU memory
 cudaFree(d_AB);
 cudaFree(d_C);
}

20

Step 3: launch kernel

Kernel is a function prefixed
by __global__

Runs on GPU

Invoked from CPU code with
<<<>>> syntax

int main()
{
 float ab[] = {1515, 159}; // Inputs, CPU mem

 // Allocate GPU memory
 float *d_AB, *d_C;
 cudaMalloc((void **)&d_AB, 2*sizeof(float));
 cudaMalloc((void **)&d_C, sizeof(float));
 // Copy from CPU mem to GPU mem
 cudaMemcpy(d_AB, &a, 2*sizeof(float), cudaMemcpyHostToDevice);

 float c; // Result on CPU

 // Copy results back to CPU mem
 cudaMemcpy(&c, d_C, sizeof(float), cudaMemcpyDeviceToHost);
 printf("c = %f\n", c);
 // Free GPU memory
 cudaFree(d_AB);
 cudaFree(d_C);
}

 // Launch computation on GPU
 addOnGPU<<<1, 1>>>(d_AB, d_C);

__global__ void addOnGPU(float * ab, float * c)
{
 *c = ab[0] + ab[1];
}

What is inside the <<<>>>?

Note: we could have passed
a and b directly
as kernel parameters

21

Asynchronous execution

By default, GPU calls are asynchronous

Returns immediately to CPU code

GPU commands are still executed in-order: queuing

Some commands are synchronous by default

cudaMemcpy(..., cudaMemcpyDeviceToHost)

Use cudaMemcpyAsync for asynchronous version

Keep it in mind when checking for errors!

Error returned by a command may be caused by an earlier command

To force synchronization: cuThreadSynchronize()

22

Outline

GPU programming environments

CUDA basics

Host side

Device side: threads, blocks, grids

Expressing parallelism

Vector add example

Managing communications

Parallel reduction example

23

Granularity of a GPU task

Results from last Thursday lab work

Total latency of transfer, compute, transfer back: ~5 µs

CPU-GPU transfer latency: 0.3 µs

GPU kernel call: ~4 µs

CPU performance: 100 Gflop/s →how many flops in 5 µs?

24

Granularity of a GPU task

Results from last Thursday lab work

Total latency of transfer, compute, transfer back: ~5 µs

CPU-GPU transfer latency: 0.3 µs

GPU kernel call: ~4 µs

CPU performance: 100 Gflop/s → 500 000 flops in 5 µs

For < 500k operations,
computing on CPU will be always faster!

Millions of operations needed to amortize data transfer time

Only worth offloading large parallel tasks the GPU

25

GPU physical organization

Shared
memory

Execution units

Registers

Warp

Thread

SM 1 SM 2

...

L1
cache

To L2 cache /
external memory

26

Workload: logical organization

A kernel is launch on a grid: my_kernel<<<blocks, threads>>>(...)

Two nested levels

Blocks

Threads

Block 2

Threads

Block 1Block 0

Thread 0
Thread 1

Thread 2

Thread 0
Thread 1

Thread 2

Grid

27

Outer level: grid of blocks

Blocks or Concurrent Thread Arrays (CTAs)

No communication between blocks of the same grid

No practical limit on the number of blocks

Block 1

Block 2 ...

Grid 1

Block 3

28

Inner level: threads

Blocks contain threads

All threads in a block

Run on the same SM:
they can communicate

Run in parallel:
they can synchronize

Constraints

Max number of threads/block
(512 or 1024 depending on arch)

Recommended: at least 64 threads
for good performance

Recommended:
multiple of the warp size

Barrier

Block

Threads

29

Multi-BSP model: recap

Modern parallel platforms are hierarchical

Threads cores nodes...∈ ∈

Remember the memory wall, the speed of light

Multi-BSP: BSP generalization with multiple nested levels

Level 1
superstep

Level 1
Barrier

Level 2
superstep

Level 2
Barrier

Higher level: more expensive synchronization

30

Multi-BSP and CUDA

Kernel launch 1

Kernel launch 2
C

P
U

 th read

Block 1

Block 2

...

Global
mem
write

Grid 1

Grid 2

L1
bar.

L2
Bar

L1 supe rstep

L2 supe rstep

Minor difference: BSP is based on message passing, CUDA on shared memory

31

Mapping blocks to hardware resources

SM resources are partitioned across blocks

Shared
memory

Execution units

Registers

Warp

Thread

SM 1 SM 2

...

L1
cache

To L2 cache /
external memory

Block 1 Block 2 Block 3 Block 4

32

Block scheduling

SM 1 SM 2

0
4

1
5

8 9 10
6
2 3

7
11

Blocks

Blocks may

Run serially or in parallel

Run on the same or different SM

Run in order or out of order

Should not assume anything on
execution order of blocks

33

Block scheduling

SM 1 SM 2

0

4

1

5
8 9 10

6

2 3

7
11

Blocks

Blocks may

Run serially or in parallel

Run on the same or different SM

Run in order or out of order

Should not assume anything on
execution order of blocks

34

Block scheduling

SM 1 SM 2

0

4

1

5

8 9 10

6

2

3

7

11

Blocks

Blocks may

Run serially or in parallel

Run on the same or different SM

Run in order or out of order

Should not assume anything on
execution order of blocks

35

Block scheduling

Blocks may

Run serially or in parallel

Run on the same or different SM

Run in order or out of order

Should not assume anything on
execution order of blocks

SM 1 SM 2

0

4
1

5 8

9

10

6
2 3

7

11

Blocks

36

Outline

GPU programming environments

CUDA basics

Host side

Device side: threads, blocks, grids

Expressing parallelism

Vector add example

Managing communications

Parallel reduction example

37

Example: vector addition

Addition example: only 1 thread

Now let's run a parallel computation

Start with multiple blocks, 1 thread/block

Independent computations in each block

No communication/synchronization needed

38

Host code: initialization

A and B are now arrays: just change allocation size

int main()
{
 int numElements = 50000;
 size_t size = numElements * sizeof(float);

 float *h_A = (float *)malloc(size);
 float *h_B = (float *)malloc(size);
 float *h_C = (float *)malloc(size);
 Initialize(h_A, h_B);

 // Allocate device memory
 float *d_A, *d_B, *d_C;
 cudaMalloc((void **)&d_A, size);
 cudaMalloc((void **)&d_B, size);
 cudaMalloc((void **)&d_C, size);

 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
 ...
}

39

Host code: kernel and kernel launch

Launch n blocks of 1 thread each (for now)

 int blocks = numElements;
 vectorAdd2<<<blocks, 1>>>(d_A, d_B, d_C);

__global__ void vectorAdd2(float *A, float *B, float *C)
{
 int i = blockIdx.x;

 C[i] = A[i] + B[i];
}

40

Device code

Block number i processes element i

Grid of blocks may have up to 3 dimensions
(blockIdx.x, blockIdx.y, blockIdx.z)

For programmer convenience: no effect on scheduling

__global__ void vectorAdd2(float *A, float *B, float *C)
{
 int i = blockIdx.x;

 C[i] = A[i] + B[i];
}

Built-in CUDA variable:
in device code only

41

Multiple blocks, multiple threads/block

Fixed number of threads / block: here 64

Host code

__global__ void vectorAdd3(const float *A, const float *B, float *C,
int n)

{
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if(i < n) {
 C[i] = A[i] + B[i];
 }
}

int threads = 64;
int blocks = (numElements + threads - 1) / threads; // Round up

vectorAdd3<<<blocks, threads>>>(d_A, d_B, d_C, numElements);

Device code

Not necessarily multiple of block size!

Last block may have less work to do

Global index

Thread block may also have up to 3 dimensions: threadIdx.{x,y,z}

42

Outline

GPU programming environments

CUDA basics

Host side

Device side: threads, blocks, grids

Expressing parallelism

Vector add example

Managing communications

Parallel reduction example

43

Barriers

Threads can synchronize inside one block

In C for CUDA:

Needs to be called at the same place
for all threads of the block

__syncthreads();

if(tid < 5) {
...

}
else {

...
}
__syncthreads();

if(a[0] == 17) {
__syncthreads();

}
else {

__syncthreads();
}

if(tid < 5) {
__syncthreads();

}
else {

__syncthreads();
}

OK OK Wrong

Same condition
for all threads in the block

44

Shared memory

Fast, software-managed memory

Faster than global memory

Valid only inside one block

Each block sees its own copy

Used to exchange data between
threads

Concurrent writes:
one thread wins, but we do not know
which one

Shared
memory

Execution units

Registers

Warp

Thread

SM 1

L1
cache

Block 1 Block 2

45

Thread communication: common pattern

Each thread writes to its
own location

No write conflict

Barrier

Wait until all threads have
written

Read data from other
threads

Write to smem[tid]

Barrier

Read from smem[f(tid)]
Barrier

Compute

Compute

46

Example: parallel reduction

Algorithm for 2-level multi-BSP model

a
0

a
1

a
2

a
3

P
0

P
1

P
2

P
3

a
4

a
5

a
6

a
7

r

L1 barrier

L2 Barrier

L1 barrier
Level 1
reduction

Level 2
reduction

P
4

P
5

P
6

P
7

⊕ ⊕

⊕

⊕ ⊕

⊕

⊕

a
0

a
2

a
4

a
6

a
0

a
4

47

Reduction in CUDA: level 1

cuda/samples/6_Advanced/reduction

__global__ void reduce1(float *g_idata, float *g_odata, unsigned int n)
{
 extern __shared__ float sdata[];

 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

 // Load from global to shared mem
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

 for(unsigned int s = 1; s < blockDim.x; s *= 2) {
 int index = 2 * s * tid;

 if(index < blockDim.x) {
 sdata[index] += sdata[index + s];
 }
 __syncthreads();
 }

 // Write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Dynamic shared memory allocation:
will specify size later

48

Reduction: host code

Level 2: run reduction kernel again,
until we have 1 block left

By the way, is our reduction operator associative?

 int smemSize = threads * sizeof(float);
 reduce1<<<blocks, threads, smemSize>>>(d_idata, d_odata, size);

Optional parameter:
Size of dynamic shared memory per block

49

A word on floating-point

Parallel reduction requires the operator to be associative

Is addition associative?

On reals: yes

On floating-point numbers: no
With 4 decimal digits:
(1.234+123.4)-123.4=124.6-123.4=1.200

Consequence: different result depending on thread count

50

Recap

Memory management:
Host code and memory / Device code and memory

Writing GPU Kernels

Dimensions of parallelism: grids, blocks, threads

Memory spaces: global, local, shared memory

Next time: code optimization techniques

51

References and further reading

CUDA C Programming Guide

Mark Harris. Introduction to CUDA C.
http://developer.nvidia.com/cuda-education

David Luebke, John Owens. Intro to parallel programming.
Online course. https://www.udacity.com/course/cs344

Paulius Micikevicius. GPU Performance Analysis and
Optimization. GTC 2012.
http://on-demand.gputechconf.com/gtc/2012/presentations/S05
14-GTC2012-GPU-Performance-Analysis.pdf

http://developer.nvidia.com/cuda-education
https://www.udacity.com/course/cs344
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

