GPU programming:
CUDA basics

Sylvain Collange

Inria Rennes — Bretagne Atlantique
sylvain.collange@inria.fr

This lecture: CUDA programming

* We have seen some GPU architecture

Elrgs=—

> Now how to program it ?

Outline

» GPU programming environments

CUDA basics
+ Host side

[7]

+ Device side: threads, blocks, grids
» Expressing parallelism

+ Vector add example

= Managing communications

+ Parallel reduction example

GPU development environments

For general-purpose programming (not graphics)
» Multiple toolkits

+ NVIDIA CUDA

+ Khronos OpenCL

+ Microsoft DirectCompute

+ Google RenderScript
» Mostly syntactical variations

+ Underlying principles are the same

» |n this course, focus on NVIDIA CUDA

Higher-level programming

* Directive-based
+ OpenACC
+ OpenMP 4.0

» Language extensions / libraries
+ Microsoft C++ AMP
+ Intel Cilk+
+ NVIDIA Thrust, CUB
* |Languages
+ Intel ISPC

» Most corporations agree we need common standards...

+ But only if their own product becomes the standard!

Outline

e GPU programming environments

» CUDA basics
+ Host side

+ Device side: threads, blocks, grids

» Expressing parallelism

+ Vector add example

= Managing communications
+ Parallel reduction example
» Re-using data

+ Matrix multiplication example

Hello World in CUDA

* CPU “host” code + GPU “device” code

__global void hello() { :}.DeWCecode
}

int main() {

hello<<<1,1>>>();
printf("Hello World!\n"); Host code

return 0;

Compiling a CUDA program

* Executable contains both host
and device code

+ Device code in PTX
and/or native

+ PTX can be recompiled
on the fly
(e.g. old program on new GPU)

= NVIDIA's compiler driver takes
care of the process:

nvcc -0 hello hello.cu

Host codey

yDevice code

gcc/MSVC

cudafe

ermediate
language

NVCC

Control flow

* Program running on CPUs

e Submit work to the GPU through the GPU driver

» Commands execute asynchronously

- ‘G_PU
Application code

Fat binary

CUDA Runtime API
cudaXxx functions

CUDA Driver API
cuYyy functions

CPU

CUDA Runtime
\
_Usgr mode
Kernel mode _
GPU Driver
pusl pop
g
Command
gueue

GPU

External memory: discrete GPU

Classical CPU-GPU model

-)

@

Split memory spaces

Highest bandwidth from
GPU memory

Transfers to main
memory are slower

PCI
Express
CPU GPU
16GB/s
26GBI/s 290GB/s
Main memory Graphics memory
8 GB 3 GB

Ex: Intel Core 17 4770, Nvidia GeForce GTX 780

10

External memory: embedded GPU

Most GPUs today
@ Same memory

» May support coherent memory

+ GPU can read directly from CPU
caches

» More contention on external
memory

CPU

Cache

T

GPU

!

>'<ZGG B/s

Main memory

8 GB

11

Data flow

» Main program runs on the host
+ Manages memory transfers

+ |nitiate work on GPU

» Typical flow

CPU

Y

GPU

CPU memory

GPU memory

12

Data flow

» Main program runs on the host
+ Manages memory transfers

+ |nitiate work on GPU

» Typical flow
+ 1. Allocate GPU memory

CPU

Y

GPU

CPU memory

GPU memory

13

Data flow

» Main program runs on the host
+ Manages memory transfers

+ Initiate work on GPU
» Typical flow

+ 1. Allocate GPU memory

+ 2. Copy inputs from CPU mem
to GPU memory

CPU

Y

GPU

1\

CPU memory

GPU memory

14

Data flow

» Main program runs on the host
+ Manages memory transfers
+ [nitiate work on GPU

» Typical flow
+ 1. Allocate GPU memory

+ 2. Copy inputs from CPU mem
to GPU memory

+ 3. Run computation on GPU

CPU

Y

7\

1\

3

CPU memory

GPU memory

15

Data flow

» Main program runs on the host
+ Manages memory transfers

+ |nitiate work on GPU

» Typical flow

CPU ?P\{

+ 1. Allocate GPU memory

3
+ 2. Copy inputs from CPU mem
to GPU memory Y 4 1\
+ 3. Run computation on GPU
CPU memory GPU memory

+ 4. Copy back results
to CPU memory

16

Example:a + b

@ Qur Hello World example did not involve the GPU
» Let's add up 2 numbers on the GPU
» Start from host code

int main()

{
float ab[] = {1515, 159}; // Inputs, in host mem

float c;

// ¢ = ab[0] + ab[l];
printf("c = %f\n", c);

vectorAdd example: cuda/samples/0O_Simple/vectorAdd

17

Step 1: allocate GPU memory

int main()

{
float ab[] = {1515, 159}; // Inputs, in host mem

// Allocate GPU memory

float *d AB, *d C;

cudaMalloc((void **)&d AB, 2*sizeof(float));
cudaMalloc((void **)&d C, sizeof(float));

Passing a pointer to the _)'\ > Allocate Space
pointer to be overwritten fora, bandc

In GPU memory

"]
// Free GPU memory f‘t the end,
cudaFree(d AB); ree memory
cudaFree(d C);

18

Step 2, 4: copy data to/from GPU memory

int main()

{
float ab[] = {1515, 159}; // Inputs, CPU mem

// Allocate GPU memory
float *d AB, *d C;

cudaMalloc((void **)&d AB, 2*sizeof(float));
cudaMalloc((void **)&d C, sizeof(float));

// Copy from CPU mem to GPU mem
cudaMemcpy(d AB, &ab, 2*sizeof(float), cudaMemcpyHostToDevice);

// Copy results back to CPU mem
cudaMemcpy(&c, d C, sizeof(float), cudaMemcpyDeviceToHost);
printf("c = %f\n", c);

// Free GPU memory
cudaFree(d AB);
cudaFree(d C);

19

Step 3: launch kernel

__global void addOnGPU(float * ab, float * c)
{

}

*c = ab[0] + ab[1l];

gt main0) » Kernel is a function prefixed
float ab[] = {1515, 159}; // Inputs, CPU mem b 'Loba'L
// Allocate GPU memory)/ ——‘—'gJ -
float *d AB, *d C;
cudaMalloc((void **)s&d AB, 2*sizeof(float)); + Runs on GPU

cudaMalloc((void **)&d C, sizeof(float));
// Copy from CPU mem to GPU mem

cudaMemcpy(d AB, &a, 2*sizeof(float), cudaMemcpyHostToDevice); @ IﬂVOkEd from CPU COde W|th

<KL>S>S>S syntax

// Launch computation on GPU

addOnGPU<<<1, 1>>>(d AB, V Note: we could have passed
AN a and b directly

float c; // Result on CPJ‘\

as kernel parameters
// Copy results back to CPU mem
cudaMemcpy (&c, d C, sizeof(float) \cudaMemcpyDeviceToHost);
printf("c = %f\n", c);
// Free GPU memory
cudaFree(d AB);
cudaFree(d C);

What is inside the <<<>>>?

20

Asynchronous execution

» By default, GPU calls are asynchronous
+ Returns immediately to CPU code
+ GPU commands are still executed in-order: queuing

» Some commands are synchronous by default
+ cudaMemcpy(..., cudaMemcpyDeviceToHost)

+ Use cudaMemcpyAsync for asynchronous version

» Keep it in mind when checking for errors!

+ Error returned by a command may be caused by an earlier command

[7]

To force synchronization: cuThreadSynchronize()

21

Outline

e GPU programming environments
CUDA basics

+ Host side

+ Device side: threads, blocks, grids
» Expressing parallelism

+ Vector add example

= Managing communications

+ Parallel reduction example

22

Granularity of a GPU task

Results from last Thursday lab work

» Total latency of transfer, compute, transfer back: ~5 us
+ CPU-GPU transfer latency: 0.3 ps
+ GPU kernel call: ~4 ps

= CPU performance: 100 Gflop/s — how many flops in 5 ps?

23

Granularity of a GPU task

Results from last Thursday lab work

» Total latency of transfer, compute, transfer back: ~5 us
+ CPU-GPU transfer latency: 0.3 ps
+ GPU kernel call: ~4 ps

» CPU performance: 100 Gflop/s — 500 000 flops in 5 s

~ For < 500k operations,
computing on CPU will be always faster!

+ Millions of operations needed to amortize data transfer time
+ Only worth offloading large parallel tasks the GPU

24

GPU physical organization

Thread

T

Warp

Execution units

Y

Registers

o

Shared L1
memory cache

SM1

\J

To L2 cache /
external memory

5 %

)
/\
}

SM 2
\

25

Workload: logical organization

» Akernel is launch on a grid: my kernel<<<blocks, threads>>>(...)
» Two nested levels

+ Blocks
+ Threads
Grid
Block O Block 1 Block 2
Threads
Thread 2 Thread 2
hread 1 hread 1
Thread O Thread O

26

Outer level: grid of blocks

» Blocks or Concurrent Thread Arrays (CTAS)
» No communication between blocks of the same grid
» No practical limit on the number of blocks

Grid 1

Block 1

Block 2

Block 3

Inner level: threads

-

Blocks contain threads

» All threads in a block

i

+ Run on the same SM:
they can communicate

+ Runin parallel:
they can synchronize

Constraints

+ Max number of threads/block
(512 or 1024 depending on arch)

+ Recommended: at least 64 threads
for good performance

+ Recommended:
multiple of the warp size

e

Block

i

e

Barrier

28

Multi-BSP model: recap

» Modern parallel platforms are hierarchical
+ Threads € cores € nodes...
+ Remember the memory wall, the speed of light

» Multi-BSP: BSP generalization with multiple nested levels

(~—
Levell J
superste
Level 2 " " Level 1
Superstep < A Barrier
\. Level 2
Barrier

= Higher level: more expensive synchronization

Multi-BSP and CUDA

Kernel launch 1
O Grid 1 Block 1
(E(g
— | o< < Block 2
N % =
e | Z L1 2
o 0)]
2 o
‘-m‘Z < o bar.
D
i®)
\ L2 Global
Bar mem
write

§ Kernel launch 2
Grid 2

Minor difference: BSP is based on message passing, CUDA on shared memory 30

Mapping blocks to hardware resources

Thread

glog §§C§§ §§Ck§§ %CE%
—
Warp
Execution units
¥ ¥
Reagistgrs
sraag"\n f'\
mampry cache
- A A
SM1 SM 2
\ \/

To L2 cache /
external memory

= SM resources are partitioned across blocks

Block scheduling

» Blocks may
+ Run serially or in parallel

+ Run on the same or different SM

+ Run in order or out of order

= Should not assume anything on
execution order of blocks

(00] I (@] wy)
OOl O

SM1

SM 2

32

Block scheduling

» Blocks may
+ Run serially or in parallel

+ Run on the same or different SM

+ Run in order or out of order

= Should not assume anything on
execution order of blocks

Blocks
5(6]7
8(9naL1
0] |2 11 [3
4
SM 1 SM 2

33

Block scheduling

» Blocks may
+ Run serially or in parallel

+ Run on the same or different SM

+ Run in order or out of order

= Should not assume anything on
execution order of blocks

Blocks
8(9naL1
0| |5 3
4 6| |7
SM 1 SM 2
112

34

Block scheduling

» Blocks may
+ Run serially or in parallel

+ Run on the same or different SM

+ Run in order or out of order

= Should not assume anything on
execution order of blocks

Blocks

0] (5 10

9 11

SM1 SM 2
1{2]|3

Outline

» GPU programming environments
CUDA basics

+ Host side

+ Device side: threads, blocks, grids
» EXxpressing parallelism

+ Vector add example

» Managing communications

+ Parallel reduction example

36

Example: vector addition

» Addition example: only 1 thread

+ Now let's run a parallel computation

» Start with multiple blocks, 1 thread/block
+ Independent computations in each block

= No communication/synchronization needed

37

Host code: initialization

= A and B are now arrays: just change allocation size

int main()

{

int numElements = 50000;
size t size = numElements * sizeof(float);

float *h A = (float *)malloc(size);
float *h B = (float *)malloc(size);
float *h C = (float *)malloc(size);

Initialize(h A, h B);

// Allocate device memory

float *d A, *d B, *d C;
cudaMalloc((void **)&d A, size);
cudaMalloc((void **)&d B, size);
cudaMalloc((void **)&d C, size);

cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

38

Host code: kernel and kernel launch

~_global void vectorAdd2(float *A, float *B, float *C)
{

int 1 = blockIdx.x;

C[i] = A[1i] + B[1i];

» Launch n blocks of 1 thread each (for now)

int blocks = numElements;
vectorAdd2<<<blocks, 1>>>(d A, d B, d (C);

39

Device code

~_global void vectorAdd2(float *A, float *B, float *C)

{ 4/\
int i = blockIdx.x; Built-in CUDA variable:

in device code only
C[i] = A[i] + BI[1il];

» Block number i/ processes element |

» Grid of blocks may have up to 3 dimensions
(blockIdx.x, blockIdx.y, blockIdx. z)

+ For programmer convenience: no effect on scheduling

40

Multiple blocks, multiple threads/block

Fixed number of threads / block: here 64

/_ Not necessarily multiple of block size!

int threads = 64; VS
int blocks = (numElements + threads - 1) / threads; // Round up

* Host code

vectorAdd3<<<blocks, threads>>>(d A, d B, d C, numElements);

» Device code

~_global void vectorAdd3(const float *A, const float *B, float *C,

int n)
t £ ~ Global index
int i“= blockIdx.x * blockDim.x + threadIdx.x;
if(i <n) { < T
C[i] = A[i] + B[il: Last block may have less work to do

}
}

Thread block may also have up to 3 dimensions: threadIdx.{x,y,z} 41

Outline

» GPU programming environments
CUDA basics

+ Host side

+ Device side: threads, blocks, grids
 Expressing parallelism

+ Vector add example

» Managing communications

+ Parallel reduction example

42

Barriers

» Threads can synchronize inside one block
» |n C for CUDA:

__syncthreads();

» Needs to be called at the same place
for all threads of the block

if(tid < 5) { ;;(a[@] == 17) {

- __syncthreads();
} }
else { else {

e ~_syncthreads();
} }
~_syncthreads(); Same condition

for all threads in the block
OK OK

if(tid < 5) {

Wrong

43

Shared memory

» Fast, software-managed memory
+ Faster than global memory

» Valid only inside one block
+ Each block sees its own copy

» Used to exchange data between
threads

» Concurrent writes:
one thread wins, but we do not know

which one

Thread

-~
Warp

Execution units

Y

Reagisters

SHarled L1
memor cache

44

Thread communication: common pattern

* Each thread writes to its
own location

+ No write conflict Compute
_ ¢ ¢ ¢ Write to smem|tid]
* Barrier Barrier
+ Wait until all threads have Read from smem[f(tid)]
written ¢ ¢ ¢ ¢ Barrier
Compute
» Read data from other P
threads

45

Example: parallel reduction

» Algorithm for 2-level multi-BSP model

I:)o Pl Pz P3 I:)4 I:)5 P6 P7

Y & &L % % &% & & L1 barrier)

o & 9 N > Level 1
0 2 4 6 L1 barrier reduction
\/ / \/ /
@® @®

a, a, <
L / L2 Barrier

Level 2

T > reduction
;

46

Reduction in CUDA: level 1

~_global void reducel(float *g idata, float *g odata, unsigned int n)

extern shared float sdatall; Dynamic shared memory allocation:

- will specify size later
threadIdx.x;

unsigned int tid =
= blockIdx.x * blockDim.x + threadIdx.x;

unsigned int 1

// Load from global to shared mem
sdata[tid] = (i < n) ? g idata[i] : O;
__syncthreads();

for(unsigned int s = 1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

i1f(index < blockDim.x) {
sdata[index] += sdata[index + s];
}

__syncthreads();

}

// Write result for this block to global mem
if (tid == 0) g odata[blockIdx.x] = sdata[0Q];
}

cuda/samples/6_Advanced/reduction 47

Reduction: host code

int smemSize = threads * sizeof(float);

reducel<<<blocks, threads, smemSize>>>(d idata, d odata, size);
7

Optional parameter:
Size of dynamic shared memory per block

» Level 2: run reduction kernel again,
until we have 1 block left

» By the way, Is our reduction operator associative?

48

A word on floating-point

» Parallel reduction requires the operator to be associative
» |s addition associative?
+ On reals: yes

+ On floating-point numbers: no
With 4 decimal digits:
(1.234+123.4)-123.4=124.6-123.4=1.200

» Consequence: different result depending on thread count

49

Recap

» Memory management:
Host code and memory / Device code and memory

» Writing GPU Kernels
= Dimensions of parallelism: grids, blocks, threads
= Memory spaces: global, local, shared memory

» Next time: code optimization techniques

50

References and further reading

» CUDA C Programming Guide

» Mark Harris. Introduction to CUDA C.
http://developer.nvidia.com/cuda-education

» David Luebke, John Owens. Intro to parallel programming.
Online course. https://www.udacity.com/course/cs344

» Paulius Micikevicius. GPU Performance Analysis and
Optimization. GTC 2012.
http://on-demand.gputechconf.com/gtc/2012/presentations/S05
14-GTC2012-GPU-Performance-Analysis.pdf

51

http://developer.nvidia.com/cuda-education
https://www.udacity.com/course/cs344
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

