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This lecture: CUDA programming

* We have seen some GPU architecture

Elrgs=—

> Now how to program it ?



Outline

» GPU programming environments

CUDA basics
+ Host side

[ 7]

+ Device side: threads, blocks, grids
» Expressing parallelism

+ Vector add example

= Managing communications

+ Parallel reduction example



GPU development environments

For general-purpose programming (not graphics)
» Multiple toolkits

+ NVIDIA CUDA

+ Khronos OpenCL

+ Microsoft DirectCompute

+ Google RenderScript
» Mostly syntactical variations

+ Underlying principles are the same

» |n this course, focus on NVIDIA CUDA



Higher-level programming

* Directive-based
+ OpenACC
+ OpenMP 4.0

» Language extensions / libraries
+ Microsoft C++ AMP
+ Intel Cilk+
+ NVIDIA Thrust, CUB
* |Languages
+ Intel ISPC

» Most corporations agree we need common standards...

+ But only if their own product becomes the standard!



Outline

e GPU programming environments

» CUDA basics
+ Host side

+ Device side: threads, blocks, grids

» Expressing parallelism

+ Vector add example

= Managing communications
+ Parallel reduction example
» Re-using data

+ Matrix multiplication example



Hello World in CUDA

* CPU “host” code + GPU “device” code

__global  void hello() { :}.DeWCecode
}

int main() {

hello<<<1,1>>>();
printf("Hello World!\n"); Host code

return 0;




Compiling a CUDA program

* Executable contains both host
and device code

+ Device code in PTX
and/or native

+ PTX can be recompiled
on the fly
(e.g. old program on new GPU)

= NVIDIA's compiler driver takes
care of the process:

nvcc -0 hello hello.cu

Host codey

yDevice code

gcc/MSVC

cudafe

ermediate
language

NVCC




Control flow

* Program running on CPUs

e Submit work to the GPU through the GPU driver

» Commands execute asynchronously

- ‘G_PU
Application code

Fat binary

CUDA Runtime API
cudaXxx functions

CUDA Driver API
cuYyy functions

CPU

CUDA Runtime
\
_Usgr mode
Kernel mode _
GPU Driver
pusl pop
g
Command
gueue

GPU




External memory: discrete GPU

Classical CPU-GPU model

- )

@

Split memory spaces

Highest bandwidth from
GPU memory

Transfers to main
memory are slower

PCI
Express
CPU GPU
16GB/s
26GBI/s 290GB/s
Main memory Graphics memory
8 GB 3 GB

Ex: Intel Core 17 4770, Nvidia GeForce GTX 780
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External memory: embedded GPU

Most GPUs today
@ Same memory

» May support coherent memory

+ GPU can read directly from CPU
caches

» More contention on external
memory

CPU

Cache

T

GPU

!

>'<ZGG B/s

Main memory

8 GB
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Data flow

» Main program runs on the host
+ Manages memory transfers

+ |nitiate work on GPU

» Typical flow

CPU

Y

GPU

CPU memory

GPU memory
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Data flow

» Main program runs on the host
+ Manages memory transfers

+ |nitiate work on GPU

» Typical flow
+ 1. Allocate GPU memory

CPU

Y

GPU

CPU memory

GPU memory
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Data flow

» Main program runs on the host
+ Manages memory transfers

+ Initiate work on GPU
» Typical flow

+ 1. Allocate GPU memory

+ 2. Copy inputs from CPU mem
to GPU memory

CPU

Y

GPU

1\

CPU memory

GPU memory
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Data flow

» Main program runs on the host
+ Manages memory transfers
+ [nitiate work on GPU

» Typical flow
+ 1. Allocate GPU memory

+ 2. Copy inputs from CPU mem
to GPU memory

+ 3. Run computation on GPU

CPU

Y

7\

1\

3

CPU memory

GPU memory
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Data flow

» Main program runs on the host
+ Manages memory transfers

+ |nitiate work on GPU

» Typical flow

CPU ?P\{

+ 1. Allocate GPU memory

3
+ 2. Copy inputs from CPU mem
to GPU memory Y 4 1\
+ 3. Run computation on GPU
CPU memory GPU memory

+ 4. Copy back results
to CPU memory

16



Example:a + b

@ Qur Hello World example did not involve the GPU
» Let's add up 2 numbers on the GPU
» Start from host code

int main()

{
float ab[] = {1515, 159}; // Inputs, in host mem

float c;

// ¢ = ab[0] + ab[l];
printf("c = %f\n", c);

vectorAdd example: cuda/samples/0O_Simple/vectorAdd
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Step 1: allocate GPU memory

int main()

{
float ab[] = {1515, 159}; // Inputs, in host mem

// Allocate GPU memory

float *d AB, *d C;

cudaMalloc((void **)&d AB, 2*sizeof(float));
cudaMalloc((void **)&d C, sizeof(float));

Passing a pointer to the \_)'\ > Allocate Space
pointer to be overwritten fora, bandc

In GPU memory

" ]
// Free GPU memory f‘t the end,
cudaFree(d AB); ree memory
cudaFree(d C);

18



Step 2, 4: copy data to/from GPU memory

int main()

{
float ab[] = {1515, 159}; // Inputs, CPU mem

// Allocate GPU memory
float *d AB, *d C;

cudaMalloc((void **)&d AB, 2*sizeof(float));
cudaMalloc((void **)&d C, sizeof(float));

// Copy from CPU mem to GPU mem
cudaMemcpy(d AB, &ab, 2*sizeof(float), cudaMemcpyHostToDevice);

// Copy results back to CPU mem
cudaMemcpy(&c, d C, sizeof(float), cudaMemcpyDeviceToHost);
printf("c = %f\n", c);

// Free GPU memory
cudaFree(d AB);
cudaFree(d C);

19



Step 3: launch kernel

__global  void addOnGPU(float * ab, float * c)
{

}

*c = ab[0] + ab[1l];

gt main0) » Kernel is a function prefixed
float ab[] = {1515, 159}; // Inputs, CPU mem b 'Loba'L
// Allocate GPU memory )/ ——‘—'gJ -
float *d AB, *d C;
cudaMalloc((void **)s&d AB, 2*sizeof(float)); + Runs on GPU

cudaMalloc((void **)&d C, sizeof(float));
// Copy from CPU mem to GPU mem

cudaMemcpy(d AB, &a, 2*sizeof(float), cudaMemcpyHostToDevice); @ IﬂVOkEd from CPU COde W|th

<KL>S>S>S syntax

// Launch computation on GPU

addOnGPU<<<1, 1>>>(d AB, V Note: we could have passed
AN a and b directly

float c; // Result on CPJ‘\

as kernel parameters
// Copy results back to CPU mem
cudaMemcpy (&c, d C, sizeof(float) \cudaMemcpyDeviceToHost);
printf("c = %f\n", c);
// Free GPU memory
cudaFree(d AB);
cudaFree(d C);

What is inside the <<<>>>?

20



Asynchronous execution

» By default, GPU calls are asynchronous
+ Returns immediately to CPU code
+ GPU commands are still executed in-order: queuing

» Some commands are synchronous by default
+ cudaMemcpy(..., cudaMemcpyDeviceToHost)

+ Use cudaMemcpyAsync for asynchronous version

» Keep it in mind when checking for errors!

+ Error returned by a command may be caused by an earlier command

[ 7]

To force synchronization: cuThreadSynchronize()

21



Outline

e GPU programming environments
CUDA basics

+ Host side

+ Device side: threads, blocks, grids
» Expressing parallelism

+ Vector add example

= Managing communications

+ Parallel reduction example
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Granularity of a GPU task

Results from last Thursday lab work

» Total latency of transfer, compute, transfer back: ~5 us
+ CPU-GPU transfer latency: 0.3 ps
+ GPU kernel call: ~4 ps

= CPU performance: 100 Gflop/s — how many flops in 5 ps?

23



Granularity of a GPU task

Results from last Thursday lab work

» Total latency of transfer, compute, transfer back: ~5 us
+ CPU-GPU transfer latency: 0.3 ps
+ GPU kernel call: ~4 ps

» CPU performance: 100 Gflop/s — 500 000 flops in 5 s

~ For < 500k operations,
computing on CPU will be always faster!

+ Millions of operations needed to amortize data transfer time
+ Only worth offloading large parallel tasks the GPU
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GPU physical organization

Thread

T

Warp

Execution units

Y

Registers

o

Shared L1
memory cache

SM1

\J

To L2 cache /
external memory

5 %

)
/\
}

SM 2
\
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Workload: logical organization

» Akernel is launch on a grid: my kernel<<<blocks, threads>>>(...)
» Two nested levels

+ Blocks
+ Threads
Grid
Block O Block 1 Block 2
Threads
Thread 2 Thread 2
hread 1 hread 1
Thread O Thread O

26



Outer level: grid of blocks

» Blocks or Concurrent Thread Arrays (CTAS)
» No communication between blocks of the same grid
» No practical limit on the number of blocks

Grid 1

Block 1

Block 2

Block 3




Inner level: threads

-

Blocks contain threads

» All threads in a block

i

+ Run on the same SM:
they can communicate

+ Runin parallel:
they can synchronize

Constraints

+ Max number of threads/block
(512 or 1024 depending on arch)

+ Recommended: at least 64 threads
for good performance

+ Recommended:
multiple of the warp size

e

Block

i

e

Barrier

28



Multi-BSP model: recap

» Modern parallel platforms are hierarchical
+ Threads € cores € nodes...
+ Remember the memory wall, the speed of light

» Multi-BSP: BSP generalization with multiple nested levels

( ~—
Levell J
superste
Level 2 " " Level 1
Superstep < A Barrier
\. Level 2
Barrier

= Higher level: more expensive synchronization



Multi-BSP and CUDA

Kernel launch 1
O Grid 1 Block 1
(E( g
— | o< < Block 2
N % =
e | Z L1 2
o 0)]
2 o
‘-m‘Z < o bar.
D
i®)
\ L2 Global
Bar mem
write

§ Kernel launch 2
Grid 2

Minor difference: BSP is based on message passing, CUDA on shared memory 30



Mapping blocks to hardware resources

Thread

glog §§C§§ §§Ck§§ %CE%
—
Warp
Execution units
¥ ¥
Reagistgrs
sraag"\n f'\
mampry cache
- A A
SM1 SM 2
\ \/

To L2 cache /
external memory

= SM resources are partitioned across blocks



Block scheduling

» Blocks may
+ Run serially or in parallel

+ Run on the same or different SM

+ Run in order or out of order

= Should not assume anything on
execution order of blocks

(00] I (@] wy)
OOl O

SM1

SM 2
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Block scheduling

» Blocks may
+ Run serially or in parallel

+ Run on the same or different SM

+ Run in order or out of order

= Should not assume anything on
execution order of blocks

Blocks
5(6]7
8(9naL1
0] |2 11 [3
4
SM 1 SM 2
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Block scheduling

» Blocks may
+ Run serially or in parallel

+ Run on the same or different SM

+ Run in order or out of order

= Should not assume anything on
execution order of blocks

Blocks
8(9naL1
0| |5 3
4 6| |7
SM 1 SM 2
112
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Block scheduling

» Blocks may
+ Run serially or in parallel

+ Run on the same or different SM

+ Run in order or out of order

= Should not assume anything on
execution order of blocks

Blocks

0] (5 10

9 11

SM1 SM 2
1{2]|3




Outline

» GPU programming environments
CUDA basics

+ Host side

+ Device side: threads, blocks, grids
» EXxpressing parallelism

+ Vector add example

» Managing communications

+ Parallel reduction example
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Example: vector addition

» Addition example: only 1 thread

+ Now let's run a parallel computation

» Start with multiple blocks, 1 thread/block
+ Independent computations in each block

= No communication/synchronization needed

37



Host code: initialization

= A and B are now arrays: just change allocation size

int main()

{

int numElements = 50000;
size t size = numElements * sizeof(float);

float *h A = (float *)malloc(size);
float *h B = (float *)malloc(size);
float *h C = (float *)malloc(size);

Initialize(h A, h B);

// Allocate device memory

float *d A, *d B, *d C;
cudaMalloc((void **)&d A, size);
cudaMalloc((void **)&d B, size);
cudaMalloc((void **)&d C, size);

cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);
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Host code: kernel and kernel launch

~_global void vectorAdd2(float *A, float *B, float *C)
{

int 1 = blockIdx.x;

C[i] = A[1i] + B[1i];

» Launch n blocks of 1 thread each (for now)

int blocks = numElements;
vectorAdd2<<<blocks, 1>>>(d A, d B, d (C);

39



Device code

~_global void vectorAdd2(float *A, float *B, float *C)

{ 4/\
int i = blockIdx.x; Built-in CUDA variable:

in device code only
C[i] = A[i] + BI[1il];

» Block number i/ processes element |

» Grid of blocks may have up to 3 dimensions
(blockIdx.x, blockIdx.y, blockIdx. z)

+ For programmer convenience: no effect on scheduling

40



Multiple blocks, multiple threads/block

Fixed number of threads / block: here 64

/_ Not necessarily multiple of block size!

int threads = 64; VS
int blocks = (numElements + threads - 1) / threads; // Round up

* Host code

vectorAdd3<<<blocks, threads>>>(d A, d B, d C, numElements);

» Device code

~_global void vectorAdd3(const float *A, const float *B, float *C,

int n)
t £ ~ Global index
int i“= blockIdx.x * blockDim.x + threadIdx.x;
if(i <n) { < T
C[i] = A[i] + B[il: Last block may have less work to do

}
}

Thread block may also have up to 3 dimensions: threadIdx.{x,y,z} 41



Outline

» GPU programming environments
CUDA basics

+ Host side

+ Device side: threads, blocks, grids
 Expressing parallelism

+ Vector add example

» Managing communications

+ Parallel reduction example
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Barriers

» Threads can synchronize inside one block
» |n C for CUDA:

__syncthreads();

» Needs to be called at the same place
for all threads of the block

if(tid < 5) { ;;(a[@] == 17) {

- __syncthreads();
} }
else { else {

e ~_syncthreads();
} }
~_syncthreads(); Same condition

for all threads in the block
OK OK

if(tid < 5) {

Wrong

43



Shared memory

» Fast, software-managed memory
+ Faster than global memory

» Valid only inside one block
+ Each block sees its own copy

» Used to exchange data between
threads

» Concurrent writes:
one thread wins, but we do not know

which one

Thread

-~
Warp

Execution units

Y

Reagisters

SHarled L1
memor cache
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Thread communication: common pattern

* Each thread writes to its
own location

+ No write conflict Compute
_ ¢ ¢ ¢ Write to smem|tid]
* Barrier Barrier
+ Wait until all threads have Read from smem[f(tid)]
written ¢ ¢ ¢ ¢ Barrier
Compute
» Read data from other P
threads

45



Example: parallel reduction

» Algorithm for 2-level multi-BSP model

I:)o Pl Pz P3 I:)4 I:)5 P6 P7

Y & &L % % &% & & L1 barrier )

o & 9 N > Level 1
0 2 4 6 L1 barrier reduction
\/ / \/ /
@® @®

a, a, <
L / L2 Barrier

Level 2

T > reduction
;
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Reduction in CUDA: level 1

~_global void reducel(float *g idata, float *g odata, unsigned int n)

extern shared float sdatall; Dynamic shared memory allocation:

- will specify size later
threadIdx.x;

unsigned int tid =
= blockIdx.x * blockDim.x + threadIdx.x;

unsigned int 1

// Load from global to shared mem
sdata[tid] = (i < n) ? g idata[i] : O;
__syncthreads();

for(unsigned int s = 1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

i1f(index < blockDim.x) {
sdata[index] += sdata[index + s];
}

__syncthreads();

}

// Write result for this block to global mem
if (tid == 0) g odata[blockIdx.x] = sdata[0Q];
}

cuda/samples/6_Advanced/reduction 47



Reduction: host code

int smemSize = threads * sizeof(float);

reducel<<<blocks, threads, smemSize>>>(d idata, d odata, size);
7

Optional parameter:
Size of dynamic shared memory per block

» Level 2: run reduction kernel again,
until we have 1 block left

» By the way, Is our reduction operator associative?

48



A word on floating-point

» Parallel reduction requires the operator to be associative
» |s addition associative?
+ On reals: yes

+ On floating-point numbers: no
With 4 decimal digits:
(1.234+123.4)-123.4=124.6-123.4=1.200

» Consequence: different result depending on thread count

49



Recap

» Memory management:
Host code and memory / Device code and memory

» Writing GPU Kernels
= Dimensions of parallelism: grids, blocks, threads
= Memory spaces: global, local, shared memory

» Next time: code optimization techniques
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References and further reading

» CUDA C Programming Guide

» Mark Harris. Introduction to CUDA C.
http://developer.nvidia.com/cuda-education

» David Luebke, John Owens. Intro to parallel programming.
Online course. https://www.udacity.com/course/cs344

» Paulius Micikevicius. GPU Performance Analysis and
Optimization. GTC 2012.
http://on-demand.gputechconf.com/gtc/2012/presentations/S05
14-GTC2012-GPU-Performance-Analysis.pdf
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